1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
//! Implements all functionality related to encoding header blocks using //! HPACK. //! //! Clients should use the `Encoder` struct as the API for performing HPACK //! encoding. //! //! # Examples //! //! Encodes a header using a literal encoding. //! //! ```rust //! use hpack::Encoder; //! //! let mut encoder = Encoder::new(); //! //! let headers = vec![ //! (&b"custom-key"[..], &b"custom-value"[..]), //! ]; //! // First encoding... //! let result = encoder.encode(headers); //! // The result is a literal encoding of the header name and value, with an //! // initial byte representing the type of the encoding //! // (incremental indexing). //! assert_eq!( //! vec![0x40, //! 10, b'c', b'u', b's', b't', b'o', b'm', b'-', b'k', b'e', b'y', //! 12, b'c', b'u', b's', b't', b'o', b'm', b'-', b'v', b'a', b'l', //! b'u', b'e'], //! result); //! ``` //! //! Encodes some pseudo-headers that are already found in the static table. //! //! ```rust //! use hpack::Encoder; //! //! let mut encoder = Encoder::new(); //! let headers = vec![ //! (&b":method"[..], &b"GET"[..]), //! (&b":path"[..], &b"/"[..]), //! ]; //! //! // The headers are encoded by providing their index (with a bit flag //! // indicating that the indexed representation is used). //! assert_eq!(encoder.encode(headers), vec![2 | 0x80, 4 | 0x80]); //! ``` use std::io; use std::num::Wrapping; use super::STATIC_TABLE; use super::HeaderTable; /// Encode an integer to the representation defined by HPACK, writing it into the provider /// `io::Write` instance. Also allows the caller to specify the leading bits of the first /// octet. Any bits that are already set within the last `prefix_size` bits will be cleared /// and overwritten by the integer's representation (in other words, only the first /// `8 - prefix_size` bits from the `leading_bits` octet are reflected in the first octet /// emitted by the function. /// /// # Example /// /// ```rust /// use hpack::encoder::encode_integer_into; /// /// { /// // No bits specified in the 3 most significant bits of the first octet /// let mut vec = Vec::new(); /// encode_integer_into(10, 5, 0, &mut vec); /// assert_eq!(vec, vec![10]); /// } /// { /// // The most significant bit should be set; i.e. the 3 most significant /// // bits are 100. /// let mut vec = Vec::new(); /// encode_integer_into(10, 5, 0x80, &mut vec); /// assert_eq!(vec, vec![0x8A]); /// } /// { /// // The most leading bits number has a bit set within the last prefix-size /// // bits -- they are ignored by the function /// // bits are 100. /// let mut vec = Vec::new(); /// encode_integer_into(10, 5, 0x10, &mut vec); /// assert_eq!(vec, vec![0x0A]); /// } /// { /// let mut vec = Vec::new(); /// encode_integer_into(1337, 5, 0, &mut vec); /// assert_eq!(vec, vec![31, 154, 10]); /// } /// ``` pub fn encode_integer_into<W: io::Write>( mut value: usize, prefix_size: u8, leading_bits: u8, writer: &mut W) -> io::Result<()> { let Wrapping(mask) = if prefix_size >= 8 { Wrapping(0xFF) } else { Wrapping(1u8 << prefix_size) - Wrapping(1) }; // Clear any bits within the last `prefix_size` bits of the provided `leading_bits`. // Failing to do so might lead to an incorrect encoding of the integer. let leading_bits = leading_bits & (!mask); let mask = mask as usize; if value < mask { try!(writer.write_all(&[leading_bits | value as u8])); return Ok(()); } try!(writer.write_all(&[leading_bits | mask as u8])); value -= mask; while value >= 128 { try!(writer.write_all(&[((value % 128) + 128) as u8])); value = value / 128; } try!(writer.write_all(&[value as u8])); Ok(()) } /// Encode an integer to the representation defined by HPACK. /// /// Returns a newly allocated `Vec` containing the encoded bytes. /// Only `prefix_size` lowest-order bits of the first byte in the /// array are guaranteed to be used. pub fn encode_integer(value: usize, prefix_size: u8) -> Vec<u8> { let mut res = Vec::new(); encode_integer_into(value, prefix_size, 0, &mut res).unwrap(); res } /// Represents an HPACK encoder. Allows clients to encode arbitrary header sets /// and tracks the encoding context. That is, encoding subsequent header sets /// will use the context built by previous encode calls. /// /// This is the main API for performing HPACK encoding of headers. /// /// # Examples /// /// Encoding a header two times in a row produces two different /// representations, due to the utilization of HPACK compression. /// /// ```rust /// use hpack::Encoder; /// /// let mut encoder = Encoder::new(); /// /// let headers = vec![ /// (b"custom-key".to_vec(), b"custom-value".to_vec()), /// ]; /// // First encoding... /// let result = encoder.encode(headers.iter().map(|h| (&h.0[..], &h.1[..]))); /// // The result is a literal encoding of the header name and value, with an /// // initial byte representing the type of the encoding /// // (incremental indexing). /// assert_eq!( /// vec![0x40, /// 10, b'c', b'u', b's', b't', b'o', b'm', b'-', b'k', b'e', b'y', /// 12, b'c', b'u', b's', b't', b'o', b'm', b'-', b'v', b'a', b'l', /// b'u', b'e'], /// result); /// /// // Encode the same headers again! /// let result = encoder.encode(headers.iter().map(|h| (&h.0[..], &h.1[..]))); /// // The result is simply the index of the header in the header table (62), /// // with a flag representing that the decoder should use the index. /// assert_eq!(vec![0x80 | 62], result); /// ``` pub struct Encoder<'a> { /// The header table represents the encoder's context header_table: HeaderTable<'a>, } impl<'a> Encoder<'a> { /// Creates a new `Encoder` with a default static table, as defined by the /// HPACK spec (Appendix A). pub fn new() -> Encoder<'a> { Encoder { header_table: HeaderTable::with_static_table(STATIC_TABLE), } } /// Encodes the given headers using the HPACK rules and returns a newly /// allocated `Vec` containing the bytes representing the encoded header /// set. /// /// The encoder so far supports only a single, extremely simple encoding /// strategy, whereby each header is represented as an indexed header if /// already found in the header table and a literal otherwise. When a /// header isn't found in the table, it is added if the header name wasn't /// found either (i.e. there are never two header names with different /// values in the produced header table). Strings are always encoded as /// literals (Huffman encoding is not used). pub fn encode<'b, I>(&mut self, headers: I) -> Vec<u8> where I: IntoIterator<Item=(&'b [u8], &'b [u8])> { let mut encoded: Vec<u8> = Vec::new(); self.encode_into(headers, &mut encoded).unwrap(); encoded } /// Encodes the given headers into the given `io::Write` instance. If the io::Write raises an /// Error at any point, this error is propagated out. Any changes to the internal state of the /// encoder will not be rolled back, though, so care should be taken to ensure that the paired /// decoder also ends up seeing the same state updates or that their pairing is cancelled. pub fn encode_into<'b, I, W>(&mut self, headers: I, writer: &mut W) -> io::Result<()> where I: IntoIterator<Item=(&'b [u8], &'b [u8])>, W: io::Write { for header in headers { try!(self.encode_header_into(header, writer)); } Ok(()) } /// Encodes a single given header into the given `io::Write` instance. /// /// Any errors are propagated, similarly to the `encode_into` method, and it is the callers /// responsiblity to make sure that the paired encoder sees them too. pub fn encode_header_into<W: io::Write>( &mut self, header: (&[u8], &[u8]), writer: &mut W) -> io::Result<()> { match self.header_table.find_header(header) { None => { // The name of the header is in no tables: need to encode // it with both a literal name and value. try!(self.encode_literal(&header, true, writer)); self.header_table.add_header(header.0.to_vec(), header.1.to_vec()); }, Some((index, false)) => { // The name of the header is at the given index, but the // value does not match the current one: need to encode // only the value as a literal. try!(self.encode_indexed_name((index, header.1), false, writer)); }, Some((index, true)) => { // The full header was found in one of the tables, so we // just encode the index. try!(self.encode_indexed(index, writer)); } }; Ok(()) } /// Encodes a header as a literal (i.e. both the name and the value are /// encoded as a string literal) and places the result in the given buffer /// `buf`. /// /// # Parameters /// /// - `header` - the header to be encoded /// - `should_index` - indicates whether the given header should be indexed, i.e. /// inserted into the dynamic table /// - `buf` - The buffer into which the result is placed /// fn encode_literal<W: io::Write>( &mut self, header: &(&[u8], &[u8]), should_index: bool, buf: &mut W) -> io::Result<()> { let mask = if should_index { 0x40 } else { 0x0 }; try!(buf.write_all(&[mask])); try!(self.encode_string_literal(&header.0, buf)); try!(self.encode_string_literal(&header.1, buf)); Ok(()) } /// Encodes a string literal and places the result in the given buffer /// `buf`. /// /// The function does not consider Huffman encoding for now, but always /// produces a string literal representations, according to the HPACK spec /// section 5.2. fn encode_string_literal<W: io::Write>( &mut self, octet_str: &[u8], buf: &mut W) -> io::Result<()> { try!(encode_integer_into(octet_str.len(), 7, 0, buf)); try!(buf.write_all(octet_str)); Ok(()) } /// Encodes a header whose name is indexed and places the result in the /// given buffer `buf`. fn encode_indexed_name<W: io::Write>( &mut self, header: (usize, &[u8]), should_index: bool, buf: &mut W) -> io::Result<()> { let (mask, prefix) = if should_index { (0x40, 6) } else { (0x0, 4) }; try!(encode_integer_into(header.0, prefix, mask, buf)); // So far, we rely on just one strategy for encoding string literals. try!(self.encode_string_literal(&header.1, buf)); Ok(()) } /// Encodes an indexed header (a header that is fully in the header table) /// and places the result in the given buffer `buf`. /// /// The encoding is according to the rules of the HPACK spec, section 6.1. fn encode_indexed<W: io::Write>(&self, index: usize, buf: &mut W) -> io::Result<()> { // We need to set the most significant bit, since the bit-pattern is // `1xxxxxxx` for indexed headers. try!(encode_integer_into(index, 7, 0x80, buf)); Ok(()) } } #[cfg(test)] mod tests { use super::encode_integer; use super::Encoder; use super::super::Decoder; #[test] fn test_encode_integer() { assert_eq!(encode_integer(10, 5), [10]); assert_eq!(encode_integer(1337, 5), [31, 154, 10]); assert_eq!(encode_integer(127, 7), [127, 0]); assert_eq!(encode_integer(255, 8), [255, 0]); assert_eq!(encode_integer(254, 8), [254]); assert_eq!(encode_integer(1, 8), [1]); assert_eq!(encode_integer(0, 8), [0]); assert_eq!(encode_integer(255, 7), [127, 128, 1]); } /// A helper function that checks whether the given buffer can be decoded /// into a set of headers that corresponds to the given `headers` list. /// Relies on using the `hpack::decoder::Decoder`` struct for /// performing the decoding. /// /// # Returns /// /// A `bool` indicating whether such a decoding can be performed. fn is_decodable(buf: &Vec<u8>, headers: &Vec<(Vec<u8>, Vec<u8>)>) -> bool { let mut decoder = Decoder::new(); match decoder.decode(buf).ok() { Some(h) => h == *headers, None => false, } } /// Tests that encoding only the `:method` header works. #[test] fn test_encode_only_method() { let mut encoder: Encoder = Encoder::new(); let headers = vec![ (b":method".to_vec(), b"GET".to_vec()), ]; let result = encoder.encode(headers.iter().map(|h| (&h.0[..], &h.1[..]))); debug!("{:?}", result); assert!(is_decodable(&result, &headers)); } /// Tests that when a single custom header is sent it gets indexed by the /// coder. #[test] fn test_custom_header_gets_indexed() { let mut encoder: Encoder = Encoder::new(); let headers = vec![ (b"custom-key".to_vec(), b"custom-value".to_vec()), ]; let result = encoder.encode(headers.iter().map(|h| (&h.0[..], &h.1[..]))); assert!(is_decodable(&result, &headers)); // The header is in the encoder's dynamic table. assert_eq!(encoder.header_table.dynamic_table.to_vec(), headers); // ...but also indicated as such in the output. assert!(0x40 == (0x40 & result[0])); debug!("{:?}", result); } /// Tests that when a header gets added to the dynamic table, the encoder /// will use the index, instead of the literal representation on the next /// encoding of the same header. #[test] fn test_uses_index_on_second_iteration() { let mut encoder: Encoder = Encoder::new(); let headers = vec![ (b"custom-key".to_vec(), b"custom-value".to_vec()), ]; // First encoding... let _ = encoder.encode(headers.iter().map(|h| (&h.0[..], &h.1[..]))); // Encode the same headers again! let result = encoder.encode(headers.iter().map(|h| (&h.0[..], &h.1[..]))); // The header is in the encoder's dynamic table. assert_eq!(encoder.header_table.dynamic_table.to_vec(), headers); // The output is a single index byte? assert_eq!(result.len(), 1); // The index is correctly encoded: // - The most significant bit is set assert_eq!(0x80 & result[0], 0x80); // - The other 7 bits decode to an integer giving the index in the full // header address space. assert_eq!(result[0] ^ 0x80, 62); // The header table actually contains the header at that index? assert_eq!( encoder.header_table.get_from_table(62).unwrap(), (&headers[0].0[..], &headers[0].1[..])); } /// Tests that when a header name is indexed, but the value isn't, the /// header is represented by an index (for the name) and a literal (for /// the value). #[test] fn test_name_indexed_value_not() { { let mut encoder: Encoder = Encoder::new(); // `:method` is in the static table, but only for GET and POST let headers = vec![ (b":method", b"PUT"), ]; let result = encoder.encode(headers.iter().map(|h| (&h.0[..], &h.1[..]))); // The first byte represents the index in the header table: last // occurrence of `:method` is at index 3. assert_eq!(result[0], 3); // The rest of it correctly represents PUT? assert_eq!(&result[1..], &[3, b'P', b'U', b'T']); } { let mut encoder: Encoder = Encoder::new(); // `:method` is in the static table, but only for GET and POST let headers = vec![ (b":authority".to_vec(), b"example.com".to_vec()), ]; let result = encoder.encode(headers.iter().map(|h| (&h.0[..], &h.1[..]))); assert_eq!(result[0], 1); // The rest of it correctly represents PUT? assert_eq!( &result[1..], &[11, b'e', b'x', b'a', b'm', b'p', b'l', b'e', b'.', b'c', b'o', b'm']) } } /// Tests that multiple headers are correctly encoded (i.e. can be decoded /// back to their original representation). #[test] fn test_multiple_headers_encoded() { let mut encoder = Encoder::new(); let headers = vec![ (b"custom-key".to_vec(), b"custom-value".to_vec()), (b":method".to_vec(), b"GET".to_vec()), (b":path".to_vec(), b"/some/path".to_vec()), ]; let result = encoder.encode(headers.iter().map(|h| (&h.0[..], &h.1[..]))); assert!(is_decodable(&result, &headers)); } }